
Cocoro: Fast Simulation of Cardiac Electrophysiology with WebGPU

Ricardo M Rosales1,2, Ana Mincholé1,2, Esther Pueyo1,2

1 Aragon Institute of Engineering Research, University of Zaragoza, IIS Aragon, Zaragoza, Spain
2 CIBER in Bioengineering, Biomaterials & Nanomedicine (CIBER-BBN), Spain

Abstract

As the complexity of in silico cardiac electrophysiolog-
ical models increases, so do the computational costs. To
address this, we present Cocoro, a cutting-edge WebGPU-
based solver for efficient computation and rendering. We
describe our implementation and benchmark its accuracy,
performance, and clinical potential. Our results were com-
pared with those of openCARP (OC) on a porcine biven-
tricular mesh under anisotropic (A) and isotropic (I) se-
tups. Cocoro’s execution time (ET) for 5-second simula-
tions was measured on two GPUs with and without ex-
tra graphical information (EGI), including visualizations
of pseudo-electrocardiograms and cellular data. In addi-
tion, we compared the simulated and experimental QRS
complexes to showcase clinical applicability. Cocoro sim-
ulations closely aligned with those of OC, with the 90th

percentile (P90) of node-wise activation time differences of
11 ms (A) and 4 ms (I). For repolarization times, P90 re-
mained below 6 ms for both A and I. The five-second sim-
ulations ran in 9.54 and 22.13 min on RTX 2070 and Titan
V GPUs, respectively. Enabling EGI had a minimal im-
pact on ETs. Furthermore, the simulated QRS complexes
reproduced the experimental QRS morphologies and du-
rations. Thus, Cocoro enables fast, portable, and accu-
rate fully GPU-resident cardiac electrophysiological sim-
ulations.

1. Introduction

In silico cardiac electrophysiology can accurately repro-
duce healthy and pathological states [1, 2], allowing the
study of cardiac electrical disturbances and therapeutic tar-
gets without costly clinical trials [1, 3].

Driven by the need to investigate a wider spectrum of
physiological conditions and accompanied by experimen-
tal breakthroughs, simulation complexity has significantly
escalated and now it requires expensive supercomputers
running for long hours to answer critical open questions,
such as anatomically-based QRS variations [4]. To keep
simulations tractable, efficient software is needed that runs
on cutting-edge hardware. In this context, graphical pro-

cessing units (GPUs) have outperformed traditional CPU-
based implementations of in silico cardiac electrophysiol-
ogy models [1,5], due to their architecture’s ability to han-
dle massive parallelized workloads efficiently.

Increased model complexity compromises the simplic-
ity and portability of solvers aimed at simulating those
models, thereby hindering broader usability. To prevent
this, an increasingly popular approach is the develop-
ment of web apps that allow cross-platform compatibil-
ity and user-friendly abstraction [1, 6]. However, web
apps have extra communication layers, which can ham-
per performance. Concerning this, a recently developed
web standard called WebGPU enables GPU-based accel-
eration. Unlike its predecessor WebGL, WebGPU not only
supports GPU-based rendering but also natively allows
GPU-based computations. Briefly, GPU threads execut-
ing a main script in parallel are organized into workgroups
(WGs), and the total number of WGs defines the work-
load (WL) sent to the GPU for processing. The number
of threads within a single WG defines the WG size (WGS)
and its product with the number of WGs in the WL is the
total number of threads invoked by an app.

Here, we present Cocoro, a WebGPU-based implemen-
tation for fast and portable cardiac electrophysiology sim-
ulations. Our solver incorporates GPU-based computation
and rendering of extra graphical information (EGI), such
as pseudo-electrocardiograms (pECGs) and cellular-level
variables. In addition, it allows interactive stimulation and
parameter updates as in [1]. In the following, we describe
our implementation and the evaluation performed in terms
of accuracy, performance, and clinical applicability.

2. Methodology

2.1. Implementation

Figure 1 illustrates the app’s workflow (a) and class re-
lations in our object-oriented design (b). We aimed to min-
imize GPU calls and execute all computations and render-
ing directly on the GPU. The source code is available at
https://github.com/lino202/cocoro.

A Django server hosts three main interfaces: the Up-

Computing in Cardiology 2025; Vol 52 Page 1 ISSN: 2325-887X DOI: 10.22489/CinC.2025.271



Figure 1: a- Flux diagram. b- Conceptual class diagram. c- CS activation (top) and BiV fiber field (bottom).

load (U), Tissue (T) and Cellular (C) web pages. In U,
the user uploads meshes containing electrode positions for
pECGs computation or defining the simulation domain, its
node-wise stimulation, and fiber orientations. Once saved
and processed, these data are available in T for simula-
tion, where users can configure the cellular model, EGI,
interactive stimulation, and select options for saving or de-
bugging results. Firstly, a TissueSim object is created and,
depending on the user selection, it may instantiate MouseS-
timHandler for interactive stimulation and EnSightWriter
for saving results in the EnSight Gold format with the help
of web workers. When any EGI is enabled, a GraphRen-
derer instance handles the PECGGraph computation and
rendering of pECGs and the CellVarGraphTissue plotting
of any state variable at a specified location. Cellular simu-
lation is conducted in C, with computation handled by the
CellSim class and state variable rendering managed by the
CellVarGraphCell class. MeshData and CellObj objects
store mesh and cellular information, respectively.

After a Simulation initiated the GPU, the EGIs and the
communicating buffers, the main simulation loop begins.
Each iteration involves one rendering step and plotdt/dt
computation steps, where dt is the time integration step
and plotdt is the rendering interval set by the user. Conse-
quently, the simulation update is constrained by the com-
putation load and the display’s refresh rate. For numerical
integration, time derivatives are computed using the ex-
plicit Euler method, while gating cellular variables are in-
tegrated with the Rush-Larsen method. For diffusion, spa-
tial derivatives are solved with a central finite difference
scheme and zero-flux boundary conditions are imposed by
setting ghost nodes in the domain boundaries, as in [1, 7].

2.2. Data races

In parallel computing, read and write operations must
be carefully synchronized to avoid data races. We-
bGPU offers thread-safe atomic operations and synchro-
nization barriers. Nevertheless, atomic operations are
limited to integers, and synchronization barriers are only

Algorithm 1 Thread-safe WG-wise array reduction

1: procedure REDUCEARRAY(A, Ar, WGS)
2: Dwg[Idl]← A[Idg]
3: workgroupBarrier() ▷ wait all WG threads
4: for (cs←WGS, cs > 0, cs/2) do
5: if Idl < cs then
6: Dwg[Idl]← F(Dwg[Idl], Dwg[Idl + cs])
7: workgroupBarrier() ▷ wait all WG threads
8: if Idl == 0 then
9: Ar[Idwg]← Dwg[0]

WG-wise thread-safe, restricting synchronization when
floating-point operations and large meshes are used.

In Cocoro, potential data races arise during spatial
derivative determination, data shift for graph update,
pECG computation, and interactive stimulation. For the
first two cases, data races are avoided by using a copy
buffer of the array exposed to read-write operations, i.e.,
the copy is read, the original is written, and then the copy is
updated. As in [4], the pECG is obtained from the extracel-
lular potential ϕ(e⃗) =

∑N
i=1 ϕi(e⃗), where e⃗ is the position

of the electrode, ϕi(e⃗) is the node-wise contribution and
N is the number of nodes. Thus, a thread-safe calculation
of ϕi(e⃗) and the posterior sum is required, since N is of-
ten much larger than the maximum synchronizable WGS.
Thus, we used the reduction algorithm shown in 1, where
Idl, Idwg and Idg are the local, WG and global thread in-
dices, respectively. Briefly, the array A contains N ϕi(e⃗)
values. For Idwg = 0, a WG-level array Dwg is loaded
with the first WGS elements of A. Then, an element-wise
sum F is applied between the first and second halves of
A, with the results stored in the first half. After reduc-
tion, Dwg[0] is the sum of the first WGS elements of A
saved to the element Idwg of the reduced array Ar. Thus,
Ar has Nwg partial sums, where Nwg is the number of
WGs dispatched when the maximum WGS is used. Since
Nwg << N , the total sum can be drawn with a simple

Page 2



Figure 2: AT and APD90 maps (a) and histograms (b) for the I and A setups. c- Experimental and simulated QRS complexes
(left) and electrodes-heart relative positions (right).

loop or with additional reductions until Nwg = 1. During
interactive stimulation, F is a minimum operation, which
computes the shortest distance between mesh elements and
a click-defined ray to determine the stimulation point.

2.3. Accuracy and performance evaluation

To evaluate Cocoro, an ex vivo magnetic resonance im-
age (MRI) of a porcine heart was used to reconstruct the
biventricular (BiV) geometry at two resolutions (Figure
1c). The high (BiVh) and low (BiVl) resolution hexahe-
dral meshes consisted of 1 334 286 nodes (400 µm edge
length) and 387 539 nodes (600 µm edge length), respec-
tively. The fiber field and the species-specific conduction
system (CS) were generated as in [3]. Electrical propa-
gation was computed by numerically integrating the mon-
odomain model. BiV nodes within 1 mm of the CS end-
points (Purkinje-muscular junctions) were stimulated us-
ing activation times (ATs) from a CS simulation obtained
with the gold-standard simulator openCARP (OC). Specif-
ically, stimuli of 80-µA/cm2 magnitude, 1-ms duration
and 1000-ms period were applied. Moreover, the Gaur et
al. [2] cellular model was set in the entire BiV domain,
considering both isotropic (I) and anisotropic (A) conduc-
tivity profiles. The conductivity along the cardiac fibers
was set at 0.12 S/m and its transverse-to-longitudinal ra-
tio was set at 1 and 0.3 for the I and A cases, respectively.

We first performed 3-s simulations using the BiVh for
both I and A cases. The values of AT and action potential
duration at 90% repolarization (APD90) were drawn from
the last beat [3]. The accuracy of our solver was evaluated
by comparing these results with those obtained using OC
[6]. Both solvers used a dt of 20 µs and equal A and I pro-
files. Secondly, the execution time (ET) was measured for
5-s simulations in Cocoro with BiVh/l. Performance was
examined using two NVIDIA GPUs (RTX 2070 Super and

Titan V) and enabling or disabling the computation and
rendering of EGI. Lastly, we qualitatively assessed clin-
ical potential by comparing simulated and experimental
QRS complexes after low-pass filtering (55 Hz cutoff fre-
quency). The positions of the electrodes were derived from
a thoracic MRI acquired in an anatomically similar pig and
aligned to our BiVh through a rigid transformation (see
Figure 2c). Since our BiV model was based on an ex vivo
MRI that exhibited tissue thickening and blood pool col-
lapse, we evaluated the morphology of the QRS complex
after per-lead normalization and peak-based alignment.

3. Results and discussion

Cocoro showed strong agreement with the OC simu-
lations, used as a benchmark, in terms of depolarization-
repolarization dynamics. As illustrated in Figures 2a and
2b, Cocoro resulted in only slightly faster depolarization
and a somewhat more dispersed repolarization pattern, es-
pecially for the A case. Quantitatively, the median dif-
ference of node-wise ATs between the two solvers was 5
ms for case A and 2 ms for case I, with the correspond-
ing 90th percentile (P90) being 11 and 4 ms. This AT dis-
crepancy is hypothesized to arise from differences in inte-
gration methods: OC employed a semi-implicit (forward
Euler and Crank-Nicolson) scheme with the finite element
method for temporal and spatial integrations, respectively.
For repolarization, APD90 median differences were negli-
gible, and the P90 values reached 6 and 2 ms for A and
I, respectively. The slightly higher discrepancies observed
in the A scenario may be due to limitations of the finite
difference method, particularly when imposing zero-flux
boundary conditions in the A cases [7]. Nevertheless, Co-
coro mimicked the conductivity-based variations and pat-
terns observed in OC, with reduced dispersions of AT and
APD90 in the I case. Overall, Cocoro closely reproduced

Page 3



the depolarization-repolarization results, despite their im-
plementation differences, particularly regarding the nu-
merical integration methods.

In terms of performance, a 5-s simulation took 2.92 min
for the BiVl mesh and 9.54 min for the BiVh mesh on the
RTX GPU, whereas on the Titan GPU, the ETs were 6.35
and 22.13 min, respectively. Thus, Cocoro achieved fast
integration of the monodomain model using a biophysi-
cally detailed cellular model across various mesh sizes and
hardware architectures. In addition, ETs remained sta-
ble even when computing and rendering the EGI. This re-
marks on the efficiency achieved by our solution, mainly
due to the implementation of the reduction algorithm (Sec-
tion 2.2), which enabled the fast GPU-based pECG calcu-
lation while circumventing data-races. Comparison of per-
formance between solvers is challenging and sometimes
unfair, due to differences in numerical methods, software
technology, target hardware, and scope of development.
For instance, on an MSI Raider GE66 laptop, OC required
10 hours on 8 CPU cores for a 3-s simulation with BiVh,
whereas Cocoro completed the equivalent 5-s simulation
in 9.54 min. In this direction, a recent study [1] reported
similar ETs as our approach when solving a similar prob-
lem using a WebGL-based solver. With WebGPU showing
potential to outperform WebGL [8], there is room for opti-
mization in our implementation.

To demonstrate clinical applicability, we compared the
simulated pECGs with an experimental ECG. As shown in
Figure 2c, the in silico and experimental QRS complexes
aligned closely on nearly all leads, especially for the I case.
Discrepancies in leads such as V6 may stem from geomet-
ric differences between the simulated and experimental pig
data (see Section 2.3). Note that we computed biomimetic
QRS complexes in most leads without CS personaliza-
tion, which could lead to improved results. Future work
could include cellular-level spatial heterogeneities, allow-
ing deeper analysis of ventricular repolarization. More-
over, an extended validation and convergence analysis will
further strengthen our implementation.

Overall, this work enabled WebGPU-based fast and ac-
curate cardiac electrophysiology simulations. Our imple-
mentation differs from current GPU-based solutions by
being fully GPU-resident and seamlessly providing web-
mediated cross-platform usability, fast clinically relevant
pECG calculation, and the potential for straightforward in-
tegration with WebRTC and WebXR, enabling multi-GPU
partitioning and immersive applications [1, 9].

4. Conclusion

We presented Cocoro, our WebGPU-based implemen-
tation for cardiac electrophysiology simulation. Leverag-
ing fully GPU-resident computation and rendering, Co-
coro achieved high-performance and interactive simula-

tions that are easily portable across diverse GPU archi-
tectures. Deployed as a web application, Cocoro reduces
technical barriers, allowing users to run complex simula-
tions without requiring extensive programming expertise.

Acknowledgments

This work was supported by EU H2020 Program un-
der G.A. 874827 (BRAV3), by Agencia Estatal de In-
vestigación - Ministerio de Ciencia e Innovación (Spain)
through projects PID2022-140556OB-I00, CNS2022-
135899 and TED2021-130459B-I00, by European So-
cial Fund (EU) and Aragón Government through BSICoS
group T39 23R. The calculations were performed using
ICTS NANBIOSIS (HPC Unit at University of Zaragoza).

References

[1] Kaboudian A, et al. Fast interactive simulations of cardiac
electrical activity in anatomically accurate heart structures
by compressing sparse uniform cartesian grids. Computer
Methods and Programs in Biomedicine 2024;257:108456.

[2] Gaur N, et al. A computational model of pig ventricular car-
diomyocyte electrophysiology and calcium handling: Trans-
lation from pig to human electrophysiology. PLoS Compu-
tational Biology 2021;17(6):e1009137.

[3] Rosales R, et al. In silico assessment of arrhythmic risk in
infarcted ventricles engrafted with engineered heart tissues.
Computing in Cardiology November 2023;50:1–4.

[4] Mincholé A, Zacur E, Ariga R, Grau V, Rodriguez B. MRI-
based computational torso/biventricular multiscale models to
investigate the impact of anatomical variability on the ECG
QRS complex. Frontiers in Physiology 2019;10:1103.

[5] Neic A, et al. Accelerating cardiac bidomain simulations
using graphics processing units. IEEE Transactions on
Biomedical Engineering 2012;59:2281–2290.

[6] Plank G, et al. The openCARP simulation environment for
cardiac electrophysiology. Computer Methods and Programs
in Biomedicine 2021;208:106223.

[7] Heidenreich E. Algoritmos para ecuaciones de reacción di-
fusión aplicados a electrofisiologı́a. PhD Thesis, Universidad
de Zaragoza, 2009.

[8] Chickerur S, et al. WebGL vs. WebGPU: A performance
analysis for web 3.0. Procedia Computer Science 2024;
233:919–928.

[9] Marins Ramalho De Lima L, et al. MonoWeb: Cardiac
electrophysiology web simulator. In Computational Science
– ICCS 2024, volume 14835. Springer Nature Switzerland,
2024; 147–154.

Address for correspondence:

Ricardo M. Rosales
University of Zaragoza, Campus Rı́o Ebro, I+D Building, D-
5.01.1B, Mariano Esquillor, s/n street, 50018, Zaragoza, Spain
rrosales@unizar.es

Page 4


